Field and Galois Theory (Mid-Sem Test, BMath-3rd year, 2025)

Instructions: Total time 3 Hour. Solve problems for a max score of 20. Use terminologies, notations and results as covered in the course, no need to prove such results. If you wish to use a problem given in a homework or an exercise from the class, please supply its full solution.

- 1. An algebraic number is called an algebraic integer if it satisfies a monic polynomial in $\mathbb{Z}[X]$. Prove that (i) for any algebraic number α , there is an integer $n \geq 1$ such that $n\alpha$ is an algebraic integer. (ii) If a rational number is an algebraic integer, it must belong to \mathbb{Z} . (3+2)
- 2. Consider the field extension $\mathbb{Q}(S)/\mathbb{Q}$, where $S = \{\sqrt{p} | p \text{ is a prime in } \mathbb{Z}\}$. Let q be a prime in \mathbb{Z} . Prove that if n is any odd positive integer, $n \geq 3$, then $q^{\frac{1}{n}} \notin \mathbb{Q}(S)$.
- 3. Let L/k be an algebraic field extension and $\phi: L \to L$ be a k-linear field homomorphism. Prove that ϕ is surjective. Does this hold if L/k is NOT algebraic? Explain. (2+3)
- 4. Let k be a field of positive characteristic p and $f(X) \in k[X]$ irreducible. (i) Show that there exists an integer $e \geq 0$ such that $f(X) = g(X^{p^e})$ for some separable irreducible polynomial $g(X) \in k[X]$. (ii) Deduce that every root of f(X) has multiplicity p^e in a splitting field of f(X). (2+3)
- 5. Let $\Phi_k(X)$ denote the kth cyclotomic polynomial, i.e., the minimal polynomial of a primitive kth root of unity in \mathbb{C} over \mathbb{Q} . (i) Let p be a prime not dividing n. Prove that $\Phi_{pn}(X) = \frac{\Phi_n(X^p)}{\Phi_n(X)}$. (ii) Let n be odd. Prove that $\Phi_{2n}(X) = \Phi_n(-X)$. (3+2)
- 6. Let p be a prime and $K := \mathbb{F}_p(t)$ be the rational function field over \mathbb{F}_p . Let $\sigma : K \to K$ be the \mathbb{F}_p -automorphism defined by $\sigma(t) = t + 1$. Find the fixed field of the cyclic subgroup $< \sigma >$ of Aut(K) generated by $\sigma.(5)$